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THE REALM OF SPACE EXPLO- 
ration, the biggest obstacle to widespread 
application of autonomy in flight software is 
not technical feasibility; it is doubt about its 
trustworthiness as a replacement for human- 
in-the-loop decision-making. Autonomous 
control systems raise difficult verification 
and validation issues. V&V techniques are 
needed that significantly increase confidence 
in these decision-making systems. 

The key to acceptance of this technology 
is not hit-or-miss testing but thorough V&V 
methods that yield guarantees. We've devel- 
oped such a method that applies two analytic- 
verification approaches: design-time model 
checking that guarantees that specific condi- 
tions are never violated, and runtime embed- 
ded behavior auditors to verify that the imple- 
mented integrated system respects similar 
conditions. Together, they make verification 
activities part of design and development, not 
just a back-end step. 

The challenges of V&V 

Traditional space missions without auton- 
omy are already inherently risky. Charles Per- 
row identifies two risk dimensions for high- 
risk technologies: interactions and coupling. 
Complex interactions are those of unfamiliar 
or unplanned or unexpected sequences, and 
are either invisible or not immediately com- 
prehensible. Tightly coupled systems have 
more time-dependent processes that cannot 
be delayed or extended. His chart (see Figure 
1) identifies space missions as having both 
characteristics, thus placing them in the quad- 

TO PROVIDE RIGOROUS VALIDATION AND VERIFICATION OF 
AUTONOMOUS SOFTWARE, THE AUTHORS APPLY TWO 

ANALYTIC- VERIFICATION APPROACHES: DESIGN-TIME MODEL 
CHECKING AND RUNTIME BEHAVlOR AUDITING. 

rant depicting the riskiest technologies. 
Flight-project managers are therefore un- 

derstandably reluctant to risk a science 
mission on unproven technologies. Flight- 
qualification programs for new technology 
such as NASA's New Millennium and X2000 
are essential to overcome this initial hurdle. 
However, flight-project managers also need 
to be convinced that any technology can be 
verified and validated in the specific context 
of their mission. This poses a special chal- 
lenge to autonomy software, because tradi- 
tional V&V approaches are inadequate for it. 

Traditional spacecraft control uses se- 
quences: deterministic, time-stamped, linear 
series of commands. Their roots go back to 
electromechanical controls similar to those for 
washmg machines, although today sequences 
are implemented as software instructions. 
Sequences are validated mainly through man- 
ual review by several engineering teams (for 
example, thermal and power) to ensure that 
the sequences achieve their goals without pos- 
ing hazards to the spacecraft. This type of val- 
idation is possible precisely because the engi- 
neering teams need to consider only one 
execution path. Even minimal generalizations 
of straight-line sequencing are viewed as risky. 
One such example is conditional sequencing, 
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where a sequence has top-level conditionals- 
for example, if the spacecraft is out of the 
planet's shadow, turn the solar panels toward 
the sun. 

In contrast, autonomy software for space- 
flight compactly encodes at least millions, if 
not billions, of execution paths. Traditional 
approaches to the V&V of sequences cannot 
scale to this level. 

Also, autonomy software is inherently con- 
current-that is, multiple processes achieve 
different goals, or subgoals execute in paral- 
lel. Concurrent-task software is easier to pro- 
gram than traditional sequences because the 
means of achieving each goal can be designed 
separately. Because of the closed-loop nature 
of autonomy, each goal being achieved repre- 
sents a separate thread. However, unintended 
interactions between threads can lead to fai- 
ures. These failures are very difficult to find 
and debug through testing. More thorough 
means of finding concurrency errors are 
required. 

Analytic verification approaches can meet 
theV&V challenges of autonomous software. 
They can scale to handle the complexity of 
autonomous control, and can calculate wheth- 
er the concurrent-software designs are correct 
and monitor their execution. 
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Linear Complex 
Interactions 

Figure I .  The two dimensions of risk for high-risk technologies.’ With complex interactions and tight coupling, space 
missions fall into the quadrant depicting the riskiest missions. 

Design-time analytic- 
verification approaches 

Unlike traditional testing, which samples 
a digital system’s behavior, analytic verifi- 
cation (also calledfomal verz3cation) math- 
ematically calculates the system’s behavior. 
Traditional testing is limited because the 
number of tests required to achieve statistical 
confidence in the system’s reliability grows 
dramatically-both as a function of the sys- 
tem’s complexity and as a function of the 
desired degree of confidence. The Pentium 
floating-point bug illustrates this. Under rare 
circumstances, the floating-point circuitry of 
the early Pentiums produced an incorrect 
result. Extensive testing before the Pentium’s 
release did not reveal these circumstances. 

However, these circumstances could have 
been revealed through analytic-verification 
algorithms. For this reason, after the Pentium 
floating-point bug, digital-hardware devel- 
opers have invested heavily in formal-verifi- 
cation techniques to complement simulation 
and testing. Results have been encouraging 
and are regularly reported in arenas such as 
the International Conference on Computer- 
Aided Verification? Excellent results have 
also occurred in the verification of computer 
firmware (for example, complicated hierar- 
chical memory protocols), communication 
protocols, and operating-system services. 

To date, two main approaches to design- 
time formal verification exist: computer- 
based theorem proving and model checking. 
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Computer-based theorem proving. This 
approach can verify unbounded (that is, infi- 
nite state) systems. Theorem-provers that are 
often used in software verification include 
PVS3 and ACL2.4 Theorem-proving has two 
disadvantages. First, it requires an expert’s 
sustained effort over a substantial time per- 
iod. Second, it provides little direct informa- 
tion if the system is not correct. The inabil- 
ity to find a proof of correctness is usually 
interpreted as indicating that the expert needs 
to explore a different approach, not that the 
proof doesn’t exist. 

Typically, an expert will interact with a 
computer-based theorem prover for several 
work-months to generate a mechanically ver- 
ified proof of the correctness of some key 
design or subsystem of a digital system. The 
effort usually focuses on developing an 
induction hypothesis that guarantees that if 
a system starts in a state obeying the cor- 
rectness criteria, each transition of the sys- 
tem to the next state will guarantee those cri- 
teria. Carrying out a successful proof by 
induction requires the expert to be skilled at 
finding invariants that are always true of the 
system and that can be added as lemmas to 
support the induction hypothesis. 

Although computer-based theorem provers 
have become increasingly powerful, perform- 
ing many of the smaller proof steps automati- 
cally, the problem of finding suitable invari- 
ants has prevented this approach’s automation. 
Research toward automated invariant genera- 
tion is encouraging, but completely general 
algorithms will remain elusive. 

Model checking. This approach is a mathe- 
matical technique for verifying and debug- 
ging concurrent or real-time systems mod- 
eled as interacting finite-state machines. 
Given a model and a property, a model 
checker searches for traces of the model that 
violate the property. Properties can be invari- 
ants, temporal properties (that is, defined 
through modal operators such as eventu- 
ally), or in the case of real-time model 
checkers, metric time constraints defined 
through linear relations. A trace is an inter- 
leaved sequence of states (or, dually, transi- 
tions) of the finite-state machines. If the 
checker finds no traces violating the prop- 
erty, and the algorithm runs to completion, 
the property is verified. 

Model checkers differ from simulators in 
that they explore all relevant traces. In other 
words, they explore all realizable paths through 
the graph of states that can be reached from the 
initial state and that match the property being 
checked. They also enable checking much 
richer concurrency properties than is typical 
of simulators. Some model checkers are sim- 
ilar to theorem provers in that they manipulate 
symbolic descriptions of the transition rela- 
tion. However, model checkers do not perform 
induction and hence cannot verify systems 
with unbounded state. On the other hand, they 
are completely automatic and thus more prac- 
tical for verification in a spiral development 
process than theorem provers. 

Design verification using 
model checking 

Model checkers are particularly well- 
suited to exploring the relevan; execution 
paths of nondeterministic systems with mul- 
tiple processes running in parallel. This 
makes them well-adapted to verification and 
debugging of autonomy software. The num- 
ber of possible interleavings of the executions 
of parallel processes has an upper bound pro- 
portional to the product of the number of local 
states traversed in the execution of each 
process. Anticipating all these interleavings 
can be difficult for a human designer; model 
checking can find subtle, pernicious interac- 
tions that violate correctness conditions. 

For example, an unexpected interaction 
between a communication process, a weather- 
data process, and an information-bus process 
caused the Mars Pathfinder software to enter 
a quasi-deadlock. This resulted in Pathfinder 
resetting itself because of the timeout of a 
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funcall-w-m-properties (props closure) 
unwind-protect( 

do 
critical section( ... ) ; 
achieve-lock-properties(1ocks); 
funcall(c1osure); 

Od , + 
release-locks(1ocks)); 

(a1 

maintain-properties-daemon 
loop-forever do 

if check-locks 
do automastic recoveryt 

if not (changed? (...count...) ) 
then wait-for(...); 

od 

Figure 2. Simplified extracts of the executive code, converted to on Algol-like syntax: (0) the funcall-with-maintained-property construct; (b) the 
maintain-properties-daemon. 

watchdog timer, and in the loss of several 
days’ worth of science. A subsequent model- 
checking replication of the interaction of these 
three processes duplicated this bug. 

In this section, however, we discuss the 
discovery of bugs during design verification 
of autonomy software, before they occur dur- 
ing a mission. As an example, we’ll briefly 
describe one such bug that our model checker 
found in the executive subsystem of the 
DS- 1 Remote Agent.5 

The correctness criteria given to a model 
checker are expressed in a temporal logic that 
includes logical predicates on states and tem- 
poral operators on traces. Temporal logics dif- 
fer in the specific temporal operators they pro- 
vide. The temporal logic LTL includes the 
temporal operators []P, meaning that the pred- 
icate P is always true of the states in a trace, 
and oP, meaning that P is eventually true of 
a state in a trace. (This logic is neither strictly 
less nor more powerful than the Tspec lan- 
guage described below for execution-time 
checking, but a significant area of overlap 
exists between what properties the two lan- 
guages can express.) 

In the executive code for the DS-1 Remote 
Agent, the model checker Spin6 found an 
error trace that violates an eventually prop- 
erty. Specifically, it found an error trace 
where an executive-task program might 
abort without eventually releasing its prop- 
erty locks. This can cause a deadlock where 
other tasks cannot execute because the 
aborted task has not released the properties 
they need. The properties locked by a task 
are typically device states required for the 
task’s successful execution-for example, 
the requirement that the engine-gimbal actu- 
ator be activated when the rocket engine is 
firing. The error occurred in the executive’s 
central core, which provides services analo- 
gous to those of an operating system. 

Figure 2 contains simplified extracts of the 
executive code, converted to an Algol-like 
syntax. The funcall-with-maintained- 
property construct (see Figure 2a) defined 
in the executive is called with two arguments: 
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props, the properties to be maintained 
during execution of the task’s body, and 
closure, the body itself. funcall-with- 
maintained-property in turn uses the 
unwind-protect construct to provide a 
wrapper around the body’s execution. This 
ensures that if an abort occurs during the exe- 
cution (for example, an error is signaled 
because a locked property is violated, and the 
error is unrecoverable), the locks are released 
before the task exits. 

The maintain-properties-daemon 
(see Figure 2b) monitors property violations. 
It invokes automatic recovery if a property 
violation occurs; if the recovery does not suc- 
ceed, an abort occurs. If a task’s body exe- 
cutes without aborting, the release-locks 
statement also executes afterwards. However, 
this statement is not itself protected. Thus, if 
an abort occurs during the execution of 
release-locks, funcall-with-main- 
tained-property exits-whether or not 
the locks have been released. The bold arrow 
in Figure 2a and the bold code in Figure 2b 
indicate the interleaving of these two pro- 
cesses that leads to the error trace. 

Over the course of several days, a NASA 
Ames design-verification team (Klaus Have- 
lund, John Penix, and Michael Lowry) using 
Spin found five concurrency bugs, including 
the one above. Four of these bugs were 
deemed important by the executive team, 
which believes that traditional testing would 
not have found these errors. In addition, the 
checker verified that several properties were 
correct; that is, it found no error traces.’ 

Run time verification 

In contrast to design-time formal verifica- 
tion, runtime formal verification checks the 
implemented system’s behavior during exe- 
cution, rather than a model’s properties at 
design time. This verification is formal in that 
it checks system behavior against a specifi- 
cation (a model) of valid behavior using run- 
time auditors (also called oracles). This 

approach is an element of the larger field of 
specification-based testing.8 

Runtime verification has different bene- 
fits and limitations than design-time model 
checking. On the positive side, it checks the 
implemented system rather than a design 
model. So, it can detect implementation 
errors and check behavior at a much more 
detailed level. On the negative side, because 
runtime verification checks behavior during 
system execution, the checked behavior is 
limited to the relatively few traces that get 
exhibited during scenario-based system test- 
ing and actual operation. Thus, we view run- 
time verification as a partner of design-time 
model checking, not an alternative to it. 

In current practice, a variety of people, 
including mission designers and system engi- 
neers, levy requirements on software. Such 
requirements are usually expressed in natural 
language and are therefore not directly usable 
for testing. To address that problem, we’ve 
developed Tspec, a behavior-specification 
language for nonprogrammers. Tspec uses a 
notation that spacecraft system engineers and 
software designers and developers find more 
intuitive than linear temporal logic. They can 
express behavioral constraints and expecta- 
tions, using simple Tspec constructs. Such 
specifications are then compiled into a con- 
ventional programming language and linked 
with a small class library to form behavior 
auditors. When linked with the operational 
software, these embedded behavior auditors 
perform runtime verification. 

Tspec constructs. Tspec currently offers five 
types of behavior specifications-inline tests, 
invariants, state machines, episodes, and re- 
source constraints-that a user can instanti- 
ate to specify the boundaries of acceptable 
behavior. In all cases, if the observed behav- 
ior violates the specified behavior, the viola- 
tion is reported in a system-specific manner, 
typically through logging and alerting. With 
the exception of inline tests, which get eval- 
uated in the direct flow of execution, the 
behavior auditor associated with each speci- 
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invariant NoSunInCamera (lensCoverOpen, SunConeAngle) { 
never (1ensCoverOpen kk SunConeAngle < 0.1) 

etatemachine TrafficLight (color){ 

etatee {red, yellow, green) 

transitions{ 
red ->  green 
green -> yellow 
yellow -> red} 

duration(red, 15, 60) 
duration(green, 11, 5 8 )  
duration(yellow, 2,  4) 
rate(4, 10, 300)) 

limits { 

e~isodeldeasureField(calibrate, reading, poweron){ 
steppe { 

update(ca1ibrate. true) 
update(reading, BEGIN) 
update(reading, END) 

1 
require {poweron == true 
limits { 

duration(90, 150) 
end-begin-delay(60, infinity) 

//Electric power: renewable resource, 150 watts. 
reeource renewable power (150); 

//show usage and freeing of power 
when (xsspagwr, ON) consume (power, 45); 
when (cameragwr, ON) consume (power, 6); 

(4 

Figure 3. Examples of Tspec constructs: (a) an invariant; (b) o state machine; (c) an episode; (d) a resource. 

fication gets evaluated indirectly as an 
observer of changes to specific variables 
(described later in “Instrumenting the code”). 

An inline test-like a C assert macre- 
specifies a boolean expression that should 
always evaluate to true when the control flow 
passes through during execution. 

An invariant specifies a logical condition 
that should always evaluate to true. Unlike an 
inline test, which is evaluated only when con- 
trol flow passes through it, an invariant’s con- 
dition is evaluated every time any of its vari- 
ables changes value, regardless of which line 
of code caused the value change. The invari- 
ant in Figure 3a specifies a camera safety 
requirement: never allow the lens cover to be 
open if the cone angle between the camera 
boresight and the sun vector is less than 0.1 
radian. This example is simple enough that 
you might consider extending the construct 
to enforce the invariant rather than merely 
check it. However, stating an invariant is gen- 
erally much easier than enforcing it. 
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A state machine specifies constraints on 
state-transition activity and is evaluated every 
time a specified state variable changes value. 
For example, the state machine in Figure 3b 
specifies requirements on a traffic-light con- 
troller in terms of legal transitions (for exam- 
ple, red to green), state durations (for exam- 
ple, the red-state duration must be between 
15 and 60 seconds), and the expected transi- 
tion rate (four to 10 transitions in any 300- 
second interval). 

An episode specifies a behavior fragment 
having a beginning event and an ending 
event, with potentially many intermediate 
events, where the events are expected to 
occur in the specified order. A change in any 
of an episode’s event variables triggers eval- 
uation. The episode in Figure 3c specifies 
requirements on a science measurement 
activity in terms of expected steps (three 
update events are expected), required con- 
ditions (poweron must remain true during 
the episode), and timing constraints (the 

episode should take at least 90 seconds but 
not more than 150 seconds, and at least 60 
seconds must separate the end of one episode 
from the beginning of the next). Episodes 
that remain unfinished at the end of a test sce- 
nario are reported as warnings. 

A resource specifies the type and amount 
of an available resource and the condition 
under which it  is consumed. A violation oc- 
curs if a resource limit is exceeded. Resources 
are either depletable (for example, propellant) 
or renewable (for example, power from a 
solar panel). The resource in Figure 3d spec- 
ifies the total amount of electrical power (150 
watts) and the two conditions under which 
that power is consumed (for example, the 
camera draws six watts when it is powered 
on). With additional when-consume state- 
ments that detail the amount of power con- 
sumption implied by specific states, the asso- 
ciated auditor will report if the system’s 
aggregate state ever implies greater than 150 
watts of power consumption. 

Behavior auditors. Auditors report not only 
the occurrence of unexpected events and con- 
ditions, but also the absence of expected 
events and conditions. Discrete events, such 
as the updating of a state variable or expira- 
tion of a timer, trigger the auditing. The kinds 
of behavior violations that these auditors 
detect include conditions such as value out 
of range, illegal state transition, out-of-order 
event, resource threshold exceeded, state per- 
sisted too long, and activity started but never 
completed. The focus on discrete-event 
behavior checks aims at detecting failures in 
decision-based autonomous control systems. 
Continuous control systems such p s  attitude 
control normally include specialized moni- 
tors as part of the spacecraft’s fault-protec- 
tion design that abstract behavior into a few 
discrete states. 

The auditors are not part of some tempo- 
rary test scaffold; rather, they are embedded 
in mission software. This gives them access to 
potentially all software state variables; there- 
fore they can check virtually any flight rule, 
not just the subset that might be checkable 
from a log of selected variables and events. 
In addition, continuous checking during a 
mission can provide early warning to ground 
operations when something unexpected is 
happening-whether because of hardware or 
software failure. This changes the concept of 
system testing from “checking the log files” 
to embedded real-time behavior monitoring, 
from development through deployment. This 
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approach truly implements a maxim of flight- 
software engineering: “Test what you fly and 
fly what you test.” 

Instrumenting the code. Obviously, the 
operational software must be instrumented 
so that the behavior-auditing code can access 
the required variables. In an object-oriented 
design, this can be accomplished unobtru- 
sively through the Observer design  att tern.^ 
This mechanism provides a loose coupling 
between the operational code and auditor 
code, with no change in the operational code 
as the auditor code is inserted or removed. 

Currently, Tspec specifications are being 
compiled into C++ for embedding in soft- 
ware for JPL‘s X-33 Avionics Flight Exper- 
iment. In this experiment the auditors will be 
checking behavior visible in a telemetry 
stream. Later, in JPL‘s X2000 program, 
Tspec specifications will be embedded in 
autonomous control loops. 

R APPROACH TO, AND EXPERI- 
ences with, design-time model checking and 
runtime verification suggest several important 
changes in software-development practices. 

Although the design verification of the 
executive code of DS-1 Remote Agent took 
less than a week, constructing an abstracted 
design in the Promela language (used by the 
Spin model checker) from the Lisp code took 
about one-and-a-half work-months. Achiev- 
ing a model that was sufficiently abstracted 
to be computationally tractable for verifica- 
tion by Spin required significant effort for 
two main reasons. First, model-checking lan- 
guages today are impoverished compared to 
programming or specification languages. 
Consequently, Lisp is much more expressive 
than Promela, and straightforward syntactic 
translations of Lisp into Promela result in 
code blowup. So, the translation was hand- 
tailored. Second, much of the code was not 
relevant to the correctness conditions on 
which this exercise focused. Understanding 
the code sufficiently to know how to prune 
away the irrelevant portions of the design and 
limit the degrees of freedom of the remaining 
code without eliminating possible error 

understanding is a prerequisite to perform- 
ing good abstractions. 

To enable automated design verification of 
autonomy software, researchers are pursuing 
automated modeling. We believe that with suf- 

traces was difficult. For manual modeling, 
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ficiently good facilities for abstraction, pro- 
gramming languages and design-specifica- 
tion languages can be used directly in model 
checking. This will let developers use model 
checking directly as part of a debugging pack- 
age for autonomy-software design. Auto- 
mated abstraction is a challenging research 
goal being pursued by a number of collabo- 
rating research institutions, including NASA 
Ames. A near-term altemative is to provide an 
abstraction workbench, in which autonomy 
designers can annotate their code with direc- 
tives for various kinds of abstractions, which 
would be applied syntactically. 

Furthermore, we believe that the concept 
of “software delivery” should include not 
only the operational code, but also the asso- 
ciated verifiable behavior specifications. 
When a developer receives the initial require- 
ments for a software subsystem, he or she 
should begin by expressing those require- 
ments as verifiable behavior specifications. 
This has the very positive effect of focusing 
attention first on what the behavior should 
be rather than on how to implement it. 

Finally, test engineers should inspect the 
behavior specifications. Behavior specifica- 
tions are significantly shorter and easier to 
understand than operational code, so this 
type of inspection is more approachable than 
a formal code inspection. Such inspections 
help ensure that developers have adequately 
specified the expected behavior and thereby 
reduce the chance of undetected errors. 
Developers should be praised when their 
behavior specifications catch a bug, because 
early automated detection greatly eases 
debugging. 
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